
An Object�Oriented Framework for

Block Preconditioning

Edmond Chow

University of Minnesota

and

Michael A� Heroux

Silicon Graphics� Inc�

General software for preconditioning the iterative solution of linear systems is greatly lagging
behind the literature� This is partly because speci�c problems need speci�c matrix and pre�
conditioner data structures in order to be solved e�ciently� i�e�� multiple implementations of a
preconditioner with specialized data structures are required� This article presents a framework to
support preconditioning with various� possibly user�de�ned� data structures for matrices that are
partitioned into blocks� The main idea is to de�ne data structures for the blocks� and an upper
layer of software which uses these blocks transparently of their data structure� This transparency
can be accomplished by using an object�oriented language� Thus various preconditioners� such as
block relaxations and block incomplete factorizations� only need to be de�ned once� and will work
with any block type� In addition� it is possible to transparently interchange various approximate
or exact techniques for inverting pivot blocks� or solving systems whose coe�cient matrices are
diagonal blocks� This leads to a rich variety of preconditioners that can be selected� Operations
with the blocks are performed with optimized libraries or fundamental data types� Comparisons
with an optimized Fortran �� code on both workstations and Cray supercomputers show that this
framework can approach the e�ciency of Fortran ��� as long as suitable block sizes and block
types are chosen�

Categories and Subject Descriptors� G���	
Numerical Analysis�� Numerical Linear Algebra�
Linear systems �direct and iterative methods�� Matrix inversion� Sparse and very large systems�
G�
Mathematics of Computing�� Mathematical Software� D����
Software�� Programming
languages�Object�oriented programming

General Terms� Design

This work was supported in part by the National Science Foundation under grant NSF�CCR�
������ and in part by Silicon Graphics� Inc� and the Minnesota Supercomputer Institute� The
software is available at http���www�cs�umn�edu��chow�bpkit�html�
Name� Edmond Chow
Address� Department of Computer Science and Minnesota Supercomputer Institute� University
of Minnesota� Minneapolis� MN ����� chow�cs�umn�edu
Name� Michael A� Heroux
Address� Mathematical Algorithms and Scalable Computing Group� Cray Research� Silicon
Graphics� Inc�� Eagan� MN ������ mamh�cray�com

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for pro�t or direct commercial
advantage and that copies show this notice on the �rst page or initial screen of a display along
with the full citation� Copyrights for components of this work owned by others than ACM must
be honored� Abstracting with credit is permitted� To copy otherwise� to republish� to post on
servers� to redistribute to lists� or to use any component of this work in other works� requires prior
speci�c permission and�or a fee� Permissions may be requested from Publications Dept� ACM
Inc�� ���� Broadway� New York� NY ���	� USA� fax �� ����� �������� or permissions�acm�org�

� � E� Chow and M� A� Heroux

Additional Key Words and Phrases� Block matrices� preconditioners

�� INTRODUCTION

In the iterative solution of the linear system

Ax � b�

a preconditioner M is often used to transform the system into one which has better
convergence properties� for example� in the left�preconditioned case�

M��Ax �M��b�

M�� is referred to as the preconditioning operator for the matrix A and� in general�
is a sequence of operations that somehow approximates the e�ect of A�� on a
vector�
Unfortunately� general software for preconditioning is seriously lagging behind

methods being published in the literature� Part of the reason is that many methods
do not have general applicability� they are not robust on general problems� or they
are specialized and need speci�c information �e�g�� general direction of �ow in a
�uids simulation	 that cannot be provided in a general setting�
Another reason� one that we will deal with in this article� is that speci�c lin�

ear systems need speci�c matrix and preconditioner data structures in order to be
solved e
ciently� i�e�� there need to be multiple implementations of a preconditioner
with specialized data structures� For example� in some �nite element applications�
diagonal blocks have a particular but �xed sparse structure� A block SSOR precon�
ditioner that needs to invert these diagonal blocks should use an algorithm suited
to this structure� A block SSOR code that treats these diagonal blocks in a general
way is not ideal for this problem�
When we encounter linear systems from di�erent applications� we need to deter�

mine suitable preconditioning strategies for their iterative solution� Rather than
code preconditioners individually to take advantage of the structure in each appli�
cation� it is better to have a framework for software reuse� Also� a wide range of
preconditionings should be available so that we can choose a method that matches
the di
culty of the problem and the computer resources available�
This article presents a framework to support preconditioning with various� possi�

bly user�de�ned� data structures for matrices that are partitioned into blocks� The
main idea is to de�ne data structures �called block types	 for the blocks� and an
upper layer of software which uses these blocks transparently of their data struc�
ture� Thus various preconditioners� such as block relaxations and block incomplete
factorizations� only need to be de�ned once� and will work with any block type�
These preconditioners are called global preconditioners for reasons that will soon
become apparent� The code for these preconditioners is almost as readable as the
code for their pointwise counterparts� New global preconditioners can be added in
the same fashion�
Global preconditioners need methods �called local preconditioners	 to approxi�

mately or exactly invert pivot blocks� or solve systems whose coe
cient matrices
are diagonal blocks� For example� a block stored in a sparse format might be in�

Object�Oriented Block Preconditioning � �

verted exactly� or an approximate inverse might be computed� Our design permits
a variety of these inversion or solution techniques to be de�ned for each block type�

The transparency of the block types and local preconditioners can be imple�
mented through polymorphism in an object�oriented language� Our framework�
called BPKIT� currently implements block incomplete factorization and block re�
laxation global preconditioners� a dense and a sparse block type� and a variety of
local preconditioners for both block types� Users of BPKIT will either use the block
types that are available� or add block types and local preconditioners that are ap�
propriate for their applications� Users may also de�ne new global preconditioners
that take advantage of the existing block types and local preconditioners� Thus
BPKIT is not intended to be complete library software� rather it is a framework
under which software can be specialized from relatively generic components�
It is appropriate to make some comments about why we use block preconditioning�

Many linear systems from engineering applications arise from the discretization
of coupled partial di�erential equations� The blocking in these systems may be
imposed by ordering together the equations and unknowns at a single grid point� or
those of a subdomain� In the �rst case� the blocks are usually dense� in the latter
case� they are usually sparse� Experimental tests suggest it is very advantageous for
preconditionings to exploit this block structure in a matrix �Chow and Saad ����
Fan et al� ���� Jones and Plassmann ���� Kolotilina et al� ���� The relative
robustness of block preconditioning comes partly from being able to solve accurately
for the strong coupling within these blocks� From a computational point of view�
these block matrix techniques can be more e
cient on cached and hierarchical
memory architectures because of better data locality� In the dense block case�
block matrix data structures also require less storage� Block data structures are
also amenable to graph�based reorderings and block scalings�

When approximations are also used for the diagonal or pivot blocks �i�e�� ap�
proximations with local preconditioners are used	� these techniques are speci�cally
called two�level preconditioners �Kolotilina and Yeremin ����� and o�er a middle�
ground between accuracy and simpler computations� Beginning with �Underwood�
in ��� and then �Axelsson et al� ���� and �Concus et al� ���� more than a decade
ago� these preconditioners have been motivated and analyzed in the case of block
tridiagonal incomplete factorizations combined with several types of approximate
inverses� and have recently reached a certain maturity� Most implementations of
these methods� however� are not �exible� they are often coded for a particular block
size and inversion technique� and further� they are almost always coded for dense
blocks�

The software framework presented here derives its �exibility from the use of an
object�oriented language� We chose to use C�� �Stroustrup ��� in real� ���bit
arithmetic� Other object�oriented languages are also appropriate� The framework
is computationally e
cient� since all operations involving blocks are performed with
code that employs fundamental types� or with optimized Fortran �� libraries such
as the Level � BLAS �Dongarra et al� ����� LAPACK �Demmel ����� and the
sparse BLAS toolkit �Carney et al� ����� By the same token� users implementing
block types and local preconditioners may do so in practically any language� as long
as the language can be linked with C�� by their compilers� BPKIT also has an
interface for Fortran �� users�

� � E� Chow and M� A� Heroux

BPKIT is available at http���www�cs�umn�edu��chow�bpkit�html� Other C��
e�orts in the numerical solution of linear equations include LAPACK�� �Dongarra
et al� ���� for dense systems� and Di�pack �Bruaset and Langtangen ����� ISIS��
�Clay ����� SparseLib�� and IML�� �Dongarra et al� ���� for sparse systems�
It is also possible to use an object�oriented style in other languages �Eijkhout ����
Machiels and Deville ���� Smith et al� �����
In Section �� we discuss various issues that arise when designing interfaces for

block preconditioning and for preconditioned iterative methods in general� We
describe the speci�cation of the block matrix� the global and local preconditioners�
the interface with iterative methods� and the Fortran �� interface� In Section ��
we describe the internal design of BPKIT� including the polymorphic operations
on blocks that are needed by global preconditioners� In Section �� we present the
results of some numerical tests� including a comparison with an optimized Fortran
�� code� Section � contains concluding remarks�

�� INTERFACES FOR BLOCK PRECONDITIONING

We have attempted to be general when de�ning interfaces �to allow for extensions
of functionality	� and we have attempted to accept precedents where we overlap
with related software �particularly in the interface with iterative methods	� For
concreteness� we describe several methods which will be used in the numerical tests�
Section � brings to light various issues in the software design of preconditioned
iterative methods�

��� Block matrices

A matrix that is partitioned into blocks is called a block matrix� Although with
BPKIT any storage scheme may be used to store the blocks that are not zero� the
locations of these blocks within the block matrix must still be de�ned� The block
matrix class �data type	 that is available in BPKIT� called BlockMat� contains a
pointer to each block in the block matrix� The pointers for each row of blocks �block
row	 are stored contiguously� with additional pointers to the �rst pointer for each
block row� This is the analogy to the compressed sparse row data structure �Saad
���� for pointwise matrices� pointers point to blocks instead of scalar entries�
The global preconditioners in BPKIT assume that the BlockMat class is being
used� It is possible for users to design new block matrix classes and to code new
global preconditioners for their problems� and still use the block types and local
preconditioners in BPKIT�
For the block matrix data structure described above� BPKIT provides conversion

routines to that data structure from the Harwell�Boeing format �Du� et al� �����
There is one conversion routine for each block type �e�g�� one routine will convert
a Harwell�Boeing matrix into a block matrix whose blocks are dense	� However�
these routines are provided for illustration purposes only� In practice� a user�s
matrix that is already in block form �i�e�� the nonzero entries in each block are
stored contiguously	 can usually be easily converted by the user directly into the
BlockMat form�
To be general� the conversion routines allow two levels of blocking� In many prob�

lems� particularly linear systems arising from the discretization of coupled partial
di�erential equations� the blockings may be imposed by ordering together the equa�

Object�Oriented Block Preconditioning � �

tions and unknowns at a single grid point and those of a subdomain� The latter
blocking produces coarse�grain blocks� and the smaller� nested blocks are called
�ne�grain blocks� Figure shows a block matrix of dimension �� with coarse blocks
of dimension � and �ne blocks of dimension ��

Fig� �� Block matrix with coarse and �ne blocks�

The blocks in BPKIT are the coarse blocks� Information about the �ne blocks
should also be provided to the conversion routines because it may be desirable to
store blocks such that the coarse blocks themselves have block structure� For ex�
ample� the variable block row �VBR	 �Saad ���� storage scheme can store coarse
blocks with dense �ne blocks in reduced space� Optimized matrix�vector product
and triangular solve kernels for the VBR and other block data structures are pro�
vided in the sparse BLAS toolkit �Carney et al� ���� Remington and Pozo �����
No local preconditioners or block operations� however� are de�ned for �ne blocks
�i�e�� there are not two levels of local preconditioners	�
It is apparent that the use of very small coarse blocks will degrade computing

performance due to the overhead of procedure calls� Larger blocks can give better
computational e
ciency and convergence rate in preconditioned iterative methods�
and computations with large dense blocks can be vectorized� In this article� we will
rarely have need to mention �ne blocks� thus� when we refer to �blocks� with no
distinction� we normally mean coarse blocks�
To be concrete� we give an example of how a conversion routine is called when a

block matrix is de�ned� The statement

BlockMat B��HBfile�� �� DENSE�	

� � E� Chow and M� A� Heroux

de�nes B to be a square block matrix where the blocks have dimension �� and the
blocks are stored in a format indicated by DENSE �which is of a C�� enumerated
type	� The other block type that is implemented is CSR� which stores blocks in
the compressed sparse row format� The matrix is read from the �le HBfile� which
must be encoded in the standard Harwell�Boeing format �Du� et al� ����� �The
dimension of the matrix does not need to be speci�ed in the declaration since it is
stored within the �le�	 To specify a variable block partitioning �with blocks with
di�erent sizes	� other interfaces are available which use vectors to de�ne the coarse
and �ne partitionings�

��� Specifying the preconditioning

A preconditioning for a block matrix is speci�ed by choosing

�	 a global preconditioner� and

��	 a local preconditioner for each diagonal or pivot block to exactly or approxi�
mately invert the block or solve the corresponding set of equations�

For example� to fully de�ne the conventional block Jacobi preconditioning� one must
specify the global preconditioner to be block Jacobi and the local preconditioner to
be LU factorization�
In addition� the block size of the matrix has a role in determining the e�ect of

the preconditioning� At one extreme� if the block size is one� then the precondition�
ing is entirely determined by the global preconditioner� At the other extreme� if
there is only one block� then the preconditioning is entirely determined by the local
preconditioner� The block size parameterizes the e�ect and cost between the se�
lected local and global preconditioners� The best method is likely to be somewhere
between the two extremes�
For example� suppose symmetric successive overrelaxation �SSOR	 is used as the

global preconditioner� and complete LU factorization is used as the local precondi�
tioner� For linear systems that are not too di
cult to solve� SSOR may be used with
a small block size� For more challenging systems� larger block sizes may be used�
giving a better approximation to the original matrix� In the extreme� the matrix
may be treated as a single block� and the method is equivalent to LU factorization�
A global preconditioner M is speci�ed with a very simple form of declaration� In

the case of block SSOR� the declaration is

BSSOR M	

Two functions are used to specify the local preconditioner and to provide parameters
to the global preconditioner�

M�localprecon�LP
LU�	 �� LU factorization for the blocks

M�setup�B� ���� �	 �� BSSOR�omega����� iterations��

Here B is the block matrix de�ned as in Section ��� The setup function provides
the real data to the preconditioner� and performs all the computations necessary
for setting up the global preconditioner� for example� the computation of the LU
factors in this case� Therefore� localprecon must be called before setup� The
setup function must be called again if the local preconditioner is changed� In these
interfaces� the same local preconditioner is speci�ed for all the diagonal blocks�

Object�Oriented Block Preconditioning � �

In general� however� the local preconditioners are not required to be the same� In
some applications� di�erent variables �e�g�� velocity and pressure variables in a �uids
simulation	 may be blocked together� It may then make sense to write a specialized
global preconditioner with an interface that allows di�erent local preconditioners
to be speci�ed for each block�

���� Global preconditioners� The global preconditioners that we have imple�
mented in BPKIT are listed in Table � along with the arguments of the setup

function� and any default argument values� General reference works describing
these global preconditioners and many of the local preconditioners described later
are �Axelsson ���� Barrett et al� ���� Saad ����� See also the BPKIT Reference

Manual �Chow and Heroux ����� Here we brie�y specify these preconditioners and
make a few comments on how they may be applied�

Table �� Global preconditioners�
setup arguments

BJacobi none
BSOR omega����� iterations��
BSSOR omega����� iterations��
BILUK level
BTIF none

BJacobi� BSOR and BSSOR are block versions of the diagonal� successive overrelax�
ation� and symmetric successive overrelaxation preconditioners� BILUK is a block
version of level�based incomplete LU �ILU	 factorization� BTIF is an incomplete
factorization for block tridiagonal matrices�
A preconditioner for a matrix A is often expressed as another matrix M which is

somehow an approximation to A� However�M does not need to be explicitly formed�
but instead� only the operation of M�� on a vector is required� This operation
is called the preconditioning operation� or the application of the preconditioner�
For iterative methods based on biorthogonalization� the transposed preconditioning
operator M�T is also needed�
It is also possible to apply the preconditioner in a split fashion when the pre�

conditioner has a factored form� For example� if M is factored as LU � then the
preconditioned matrix is L��AU��� and the operations of L�� and U�� on a vector
are required�
Many preconditioners M can be expressed in factored form� Consider the split�

ting of a block matrix A�

A � DA � LA � UA

where DA is the block diagonal of A� �LA is the strictly lower block triangular
part� and �UA is the strictly upper part� The block SSOR preconditioner in the
case of one iteration is de�ned by

M �

���� �	
�DA � �LA	DA

���DA � �UA	�

� � E� Chow and M� A� Heroux

The scale factor ������	 is important if the iterative method is not scale invariant�
When used as a preconditioner� the relaxation parameter � is usually chosen to be
� since selecting a value is di
cult� However� if more than one iteration is used and
the matrix is far from being symmetric and positive de�nite� underrelaxation may
be necessary to prevent divergence� Also� the simpler block SOR preconditioner
�with one iteration	

M �

�
�DA � �LA	

may be preferable over block SSOR if A is nonsymmetric� If k iterations of block
SOR are used� the preconditioner has the form

M �

�
�DA � �LA	

�
k��X
i��

��DA � �LA	
����UA � �� �	DA	�

i

�
��

although it is not implemented this way� Instead� the preconditioner is applied to
a vector v by performing k SOR iterations on the system Aw � v starting from the
zero vector�
The level�� block ILU preconditioner for certain structured matrices including

block ��point matrices can be written in a very similar form

M � �D � LA	D
���D � UA	

called the generalized block SSOR form� Here� D is the block diagonal matrix
resulting from the incomplete factorization� In general� however� a level�based block
ILU preconditioner is computed by performing Gaussian elimination and neglecting
elements in the factors that fall out of a predetermined sparsity pattern� Level�based
ILU preconditioners are much more accurate than relaxation preconditioners� but
for general sparse matrices� have storage costs at least that of the original matrix�
Incomplete factorization of block tridiagonal matrices is popular for certain struc�

tured matrices where the blocks have banded structure� It is a special case of the
generalized block SSOR form� and thus only a sequence of diagonal blocks needs to
be computed and stored� The block partitioning may be along lines of a ��D grid�
or along planes of a ��D grid� In general� any �striped� partitioning will yield a
block tridiagonal matrix� The inverse�free form of block tridiagonal factorization is

M � �D�� � LA	�I �DUA	

where D is a block diagonal matrix whose blocks Di are de�ned by the recurrence

Di � �Ai�i �Ai�i��Di��Ai���i	
��

starting with D� � �� This inverse�free form only requires matrix�vector multipli�
cations in the preconditioning operation� However� the blocks are typically very
large� and an approximate inverse is used in place of the exact inverse in the above
equation to make the factorization incomplete� Many techniques for computing
approximate inverses are available �Chow and Saad �����

����� Local preconditioners� Local preconditioners are either explicit or implicit

depending on whether �approximate	 inverses of blocks are explicitly formed� An
example of an implicit local preconditioner is LU factorization�

Object�Oriented Block Preconditioning � 	

The global preconditioners that involve incomplete factorization require the in�
verses of pivot blocks� For large block sizes� the use of approximate or exact dense
inverses usually requires large amounts of storage and computation� Thus sparse
approximate inverses should be used in these cases� Implicit local preconditioners
produce inverses that are usually dense� and are therefore usually not computa�
tionally useful for block incomplete factorizations� This use of implicit local pre�
conditioners is disallowed within BPKIT� We also apply this rule for small block
sizes� since dense exact inverses are usually most e
cient in these cases� �Note
that the explicit local preconditioner LP INVERSE for the CSR block type is meant
to be used for testing purposes only� Also� if an exact factorization is sought� it
is usually most e
cient to use an LU factorization on the whole matrix�	 The
global preconditioners that involve block relaxation may use either explicit or im�
plicit local preconditioners� but usually the implicit ones are used� Explicit local
preconditioners can be appropriate for block relaxation when the blocks are small�
Local preconditioners are also di�erentiated by the type of the blocks on which

they operate� Not all local preconditioners exist for all block types� incomplete
factorization� for example� is only meaningful for sparse types� Thus� a local pre�
conditioner must be chosen that matches the type of the block�
BPKIT requires the user to be aware of the restrictions in the above two para�

graphs when selecting a local preconditioner� Due to the dynamic binding of C��
virtual functions� violations of these restrictions will only be detected at run�time�
Table � lists the local preconditioners that we have implemented� along with their

localprecon arguments� their block types� and whether the local preconditioner
is explicit or implicit� In contrast to the setup function� localprecon takes no
default arguments� We have included an explicit exact inverse local preconditioner
for the CSR format for comparison purposes �it would be ine
cient to use it in block
tridiagonal incomplete factorizations� for example	�

Table �� Local preconditioners�
localprecon arguments Block type Expl��Impl�

LP LU none DENSE implicit
LP INVERSE none DENSE explicit
LP SVD alpha�� alpha� DENSE explicit

LP LU none CSR implicit
LP INVERSE none CSR explicit
LP RILUK level� omega CSR implicit
LP ILUT l�l� threshold CSR implicit
LP APINV TRUNC semibw CSR explicit
LP APINV BANDED semibw CSR explicit
LP APINV� none CSR explicit
LP APINVS l�l CSR explicit
LP DIAG none CSR explicit
LP TRIDIAG none CSR implicit
LP SOR omega� iterations CSR implicit
LP SSOR omega� iterations CSR implicit
LP GMRES restart� tolerance CSR implicit

LP LU is an LU factorization with pivoting� LP INVERSE is an exact inverse com�

� � E� Chow and M� A� Heroux

puted via LU factorization with pivoting� LP RILUK is level�based relaxed incom�
plete LU factorization� LP ILUT is a threshold�based ILU with control over the
number of �ll�ins �Saad ����� which may be better for inde�nite blocks� The local
preconditions pre�xed with LP APINV are new approximate inverse techniques� see
�Chow and Saad ���� and �Chow and Heroux ���� for details�
LP DIAG is a diagonal approximation to the inverse� using the diagonal of the

original block� and LP TRIDIAG is a tridiagonal implicit approximation� ignoring
all elements outside the tridiagonal band of the original block� LP SVD uses the
singular value decomposition X � U�V T to produce a dense approximate inverse
X�� � V ����UT � where �� is � with its singular values thresholded by ���� � ���
a constant �� plus a factor �� of the largest singular value ��� This may produce a
more stable incomplete factorization if there are many blocks to be inverted that are
close to being singular �Yeremin ����� LP SOR� LP SSOR and LP GMRES are iterative
methods used as local preconditioners�

��� Interface with iterative methods

An object�oriented preconditioned iterative method requires that matrix and pre�
conditioner objects de�ne a small number of operations� In BPKIT� these opera�
tions are de�ned polymorphically� and are listed in Table ��
For left and right preconditionings� the functions apply and applyt may be

used to apply the preconditioning operator �M��� or its transpose	 on a vector�
Split �also called two�sided� or symmetric	 preconditionings use applyl and applyr

to apply the left and right parts of the split preconditioner� respectively� For an
incomplete factorization A � LU � applyl is the L�� operation� and applyr is the
U�� operation� To anticipate all possible functionality� the applyc function de�nes
a combined matrix�preconditioner operator to be used� for example� to implement
the Eisenstat trick �Eisenstat ���� If the Eisenstat trick is used with �exible
preconditionings �described at the end of this section	� the right preconditioner
apply also needs to be used�
Two functions not listed here are matrix member functions that return the row

and column dimensions of the matrix� which are useful for the iterative method
code to help preallocate any work�space that is needed�
Not all the operations in Table � may be de�ned for all matrix and preconditioner

objects� and many iterative methods do not require all these operations� The
GMRES iterative method� for example� does not require the transposed operations�
and the relaxation preconditioners usually do not de�ne the split operations� This
is a case where we violate an object�oriented programming paradigm� and give the
parent classes all the specializations of their children �e�g�� a speci�c preconditioner
may not de�ne applyl although the generic preconditioner does	� This will be seen
again in Section ����
The argument lists for the functions in Table � use fundamental data types so

that iterative methods codes are not forced to adopt any particular data structure
for vectors� The interfaces use blocks of vectors to support iterative methods that
use multiple right�hand sides� The implementation of these operations use Level �
BLAS whenever possible� All the interfaces have the following form�

void mult�int nr� int nc� const double �u� int ldu� double� v� int ldv� const	

Object�Oriented Block Preconditioning �

Table 	� Operations required by iterative methods�

Matrix operations

mult matrix�vector product
trans mult transposed matrix�vector product

Preconditioner operations

apply apply preconditioner
applyt apply transposed preconditioner
applyl apply left part of a split preconditioner
applylt above� transposed
applyr apply right part of a split preconditioner
applyrt above� transposed
applyc apply a combined matrix�preconditioner operator
applyct above� transposed

where nr and nc are the row and column dimensions of the �input	 blocks of vectors�
u and v are arrays containing the values of the input and output vectors� respec�
tively� and ldu and ldv are the leading dimensions of these respective arrays� The
preconditioner operations are not de�ned as const functions� in case the precon�
ditioner objects need to change their state as the iterations progress �and spectral
information is revealed� for example	�
When a non�constant operator is used in the preconditioning� a �exible itera�

tive method such as FGMRES �Saad ���� must be used� In BPKIT� this arises
whenever GMRES is used as a local preconditioner� Users may wish to write ad�
vanced preconditioners that work with the iterative methods� and which change� for
example� when there is a lack of convergence� This is a simple way of enhancing
the robustness of iterative methods� In this case� the iterative method should be
written as a class function whose class also provides information about convergence
history and possibly approximate spectral information �Wu and Li �����

��� Fortran �� interface

Many scienti�c computing users are unfamiliar with C��� It is usually possible�
however� to provide an interface which is callable from any other language� BPKIT
provides an object�oriented type of Fortran �� interface� Objects can be created�
and pointers to them are passed through functions as Fortran �� integers� Con�
sider the following code excerpt �most of the parameters are not important to this
description	�

call blockmatrix�bmat� n� a� ja� ia� num
block
rows� partit� btype�

call preconditioner�precon� bmat� BJacobi� ��d�� ��d�� LP
LU� ��d�� ��d��

call flexgmres�bmat� sol� rhs� precon� ��� ���� ��d���

The call to blockmatrix above creates a block matrix from the compressed sparse
row data structure� given a number of arguments� This �wrapper� function is
actually written in C��� but all its arguments are available to a Fortran �� pro�
gram� The integer bmat is actually a pointer to a block matrix object in C���
The Fortran �� program is not meant to interpret this variable� but to pass it to

� � E� Chow and M� A� Heroux

other functions� such as preconditionerwhich de�nes a block preconditioner with
a number of arguments� or flexgmres which solves a linear system using �exible
GMRES� Similarly� precon is a pointer to a preconditioner object� The constant
parameters BJacobi and LP LU are used to specify a block Jacobi preconditioner�
using LU factorization to solve with the diagonal blocks�
The matrix�vector product and preconditioner operations of Table � also have

�wrapper� functions� This makes it possible to use BPKIT from an iterative solver
written in Fortran ��� This was also another motivation to use fundamental types
to specify vectors in the interface for operations such as mult �see Section ���	�
Calling Fortran �� from C�� is also possible� and this is done in BPKIT when

it calls underlying libraries such as the BLAS� BPKIT illustrates how we were able
to mix the use of di�erent languages�

�� LOCAL MATRIX OBJECTS

A block matrix may contain blocks of more than one type� The best choice for the
types of the blocks depends mostly on the structure of the matrix� but may also
depend on the proposed algorithms and the computer architecture� For example�
if a matrix has been reordered so that its diagonal blocks are all diagonal� then a
diagonal storage scheme for the diagonal blocks is best� Inversion of these blocks
would automatically use the appropriate algorithm� �The diagonal block type and
the local preconditioners for it would have to be added by the user�	
To handle di�erent block types the same way� instances of each type are imple�

mented as C�� polymorphic objects �i�e�� a set of related objects whose functions
can be called without knowing the exact type of the object	� The block types are
derived from a local matrix class called LocalMat� a class that de�nes the com�
mon interface for all the block types� The global preconditioners refer to LocalMat

objects� When LocalMat functions are called� the appropriate code is executed�
depending on the actual type of the LocalMat object �e�g�� DENSE or CSR	�
In addition� each block type has a variety of local preconditioners� The explic�

itness or implicitness of local preconditioners need to be transparent� since� for
example� either can be used in block SSOR� Thus both types of preconditioners are
derived from the same base class� In particular� local preconditioners for a given
block type are derived from the base class which is that block type �e�g�� the LP SVD

local preconditioner for the DENSE type is derived from the DENSE block type	� This
gives the user the �exibility to treat explicit local preconditioners as regular blocks�
Implicit local preconditioners are not derived separately because logically they

are related to explicit local preconditioners� All block operations that apply to
explicit preconditioners also apply to local preconditioners� however� many of these
operations are ine
cient for local preconditioners� and their use has been disallowed
to prevent improper usage� Implicit preconditioners cannot be derived separately
from explicit preconditioners because of their similarity from the point of view of
global preconditioners� The LocalMat hierarchy is illustrated in Figure �� showing
the derivation of block types and the subsequent derivation of local preconditioners�
These LocalMat classes form the �kernel� of BPKIT� and allow global precon�

ditioners to be implemented without knowledge of the type of blocks or local pre�
conditioners that are used� Users may also add to the kernel by deriving their own
speci�c classes�

Object�Oriented Block Preconditioning �
�

DENSE

LP_LU LP_ILUK

CSR

LocalMat

Fig� �� LocalMat hierarchy�

The challenge of designing the LocalMat class was to determine what operations
are required to implement block preconditioners and to give these operations se�
mantics that allow an e
cient implementation for all possible block types� The
operations are implemented as C�� virtual functions� The following subsections
describe these operations�

��� Allocating storage

An important di�erence between dense and sparse blocks is that the storage re�
quirement for sparse blocks is not always known beforehand� Thus� in order to
treat dense and sparse blocks the same way� storage is allocated for a block when
it is required� As an optimization� if it is known that dense blocks are used �e�g��
conversion of a sparse matrix to a block matrix with dense blocks	� storage may be
allocated beforehand by the user� Functions are provided to set the data pointers
of the block objects� Thus it is possible to allocate contiguous storage for an array

of dense blocks�

��� Local matrix functions

Table � Functions for LocalMat objects�
B � A�CreateEmpty�� B �
 �
A�SetToZero�dim	
dim�� A � �
A�MatCopy�B� A � B

B � A�CreateInv�lprecon� B � �A��

A�Mat Trans�B� B � AT

A�Mat Mat Add�B
 C
 alpha� C � A� �B

A�Mat Mat Mult�B
 C
 alpha
 beta� C � �AB � �C

A�Mat Vec Mult�b
 c
 alpha
 beta� c � �Ab� �c

A�Mat Trans Vec Mult�b
 c
 alpha
 beta� c � �AT b� �c

A�Mat Vec Solve�b
 c� c � A��b

A�Mat Trans Vec Solve�b
 c� c � A�T b

� � E� Chow and M� A� Heroux

Table � lists the functions that we have determined to be required for implementing
the block preconditioners listed in Table � The functions are invoked by a block
object represented by A� B and C are blocks of the same type as A� b and c are
components from a block vector object� and � and � are scalars� The default value
for � is and for � is ��
CreateEmpty�� creates an empty block �� by � dimensions	 of the same class

as that of A� This function is useful for constructing blocks in the preconditioner
without knowing the types of blocks that are being used� SetToZero�dim�� dim��

sets A to zero� resetting its dimensions if necessary� This operation is not combined
with CreateEmpty�� because it is not always necessary to zero a block when cre�
ating it� and zeroing a block could be relatively expensive for some block types�
MatCopy�B� copies its argument block to the invoking block� The original data
held by the invoking block is released� and if the new block has a di�erent size� the
allocated space is resized� CreateInv�lprecon� provides a common interface for
creating local preconditioners� lprecon is of a type that describes a local precondi�
tioner with its arguments from Table �� The exact or approximate inverse �explicit
or implicit	 of A is generated� The CreateEmpty and CreateInv functions create
new objects �not just the real data space	� These functions return pointers to the
new objects to emphasize this point�
Overloading of the arithmetic operators such as � for blocks and local precondi�

tioners has been sacri�ced since chained operations such as C � �AB��C would be
ine
cient if implemented as a sequence of elementary operations� In addition� these
operators are di
cult to implement without extra memory copying �for A � B�C�
the � operator will �rst store the result into a temporary before the result is copied
into A by the � operator	�
These are the functions that we have found to be useful for block preconditioners�

For example� C � A��B is used in BTIF�C � �AB��C is used in BILUK� and other
functions are useful� for example� in matrix�vector product and triangular solve
operations� Note in particular that Mat Trans Mat Mult is not a useful function
here� and has not been de�ned�
Note that local preconditioner objects also inherit these functions� although they

do not need them all� For objects that are implicit local preconditioners� no matrix
is formed� and operations such as addition �Mat Mat Add	 do not make sense� For
blocks for which no local preconditioner has been created� solving a system with
that block �Mat Vec Solve	 is not allowed� Here� again� we had to give the parent
classes all the specializations of their derived classes� Table � indicates when the
functions are allowed� An error condition is raised at run�time if the functions are
used incorrectly�
Given these operations� a one�step block SOR code could be implemented as

shown below� Ap is a pointer to a block matrix object which stores its block struc�
ture in CSR format �the ia array stores the block row pointers� and the ja array
stores the block column indices	� The pointers to the diagonal elements in idiag

and the inverses of the diagonal elements diag were computed during the call to
setup� V is a block vector object that allows blocks in a vector to be accessed as
individual entries� The rest of the code is self�explanatory�

�� for �i��	 i�Ap��numrow��	 i���

Object�Oriented Block Preconditioning �
�

Table �� The types of objects that may be used with each function�
Explicit Implicit

Coarse local local
Function blocks precon� precon�

CreateEmpty � �
SetToZero � �
MatCopy � �
CreateInv � �
Mat Trans � �
Mat Mat Add � �
Mat Mat Mult � �
Mat Vec Mult � �
Mat Trans Vec Mult � �
Mat Vec Solve � �
Mat Trans Vec Solve � �

�� �

� for �j�ia�i�	 j�idiag�i�	 j���

�� �

�� �� V�i� � V�i� � omega � a�j� � V�ja�j��

��

�� Ap��val�j��Mat
Vec
Mult�V�ja�j��� V�i�� �omega� ����	

�� �

��

��� diag�i���Mat
Vec
Solve�V�i�� V�i��	

��� �

A block matrix that mixes di�erent block types must be used very carefully� First�
the restrictions for the di�erent block types �Section �����	 must not be violated�
Second� unless we de�ne arithmetic operations between blocks of di�erent types�
the incomplete factorization preconditioners cannot be used�
Our main design alternative was to create a block matrix class for each block

type� The classes would be polymorphic and de�ne a set of common operations
that preconditioners may use to manipulate their blocks� A signi�cant advantage
of this design is that it is impossible to use local preconditioners of the wrong
type �e�g�� use incomplete factorization on a dense block	� A disadvantage is that
di�erent block types �e�g�� specialized types created for a particular application	
cannot be used within the same block matrix�
Another alternative was to implement meta�matrices� i�e�� blocks are nested re�

cursively� It would be complicated� however� for users to specify these types of
matrices and the levels of local preconditioners that could be used� In addition�
there is very little need for such complexity in actual applications� and the two�level
design �coarse and �ne blocks	 described in Section �� should be su
cient�

�� NUMERICAL TESTS

The numerical tests were carried out on the matrices listed in Table �� SHERMAN
is a reservoir simulation matrix on a �� �� � grid� with one unknown per grid
point� This is a simple symmetric problem which we solve using partitioning by

� � E� Chow and M� A� Heroux

planes� WIGTO��� is from an Euler equation model and was supplied by Larry
Wigton of Boeing� FIDAP�� models an axisymmetric ��D developing pipe �ow
with the fully�coupled Navier�Stokes equations using the two�equation k�� model
for turbulence� The BARTHTA and BARTHT�A matrices were supplied by Tim
Barth of NASA Ames and are from a ��D� high Reynolds number aerofoil problem�
with a �equation turbulence model� The BARTHT�A model is solved with a
preconditioner based on the less accurate but sparser BARTHTA model�

Table �� Test matrices� listed with their dimensions and numbers of nonzeros�
Matrix n no� nonz

SHERMAN� � ��� 	 ���
WIGTO��� 	 �� �	� ���
FIDAP��� �� ��� ��� ���
BARTHT�A � ��� �� ���
BARTHT�A � ��� � 	�� ���

Tables � and � show the results for SHERMAN with the block relaxation and
incomplete factorization global preconditioners� using various local preconditioners�
The arguments given for the global and local preconditioners in these tables cor�
respond to those displayed in Tables and � respectively� A block size of �� was
used� Since the matrix is block tridiagonal� BILUK and BTIF are equivalent� The
tables show the number of steps of GMRES �FGMRES� if appropriate	 that were
required to reduce the residual norm by a factor of ���� A dagger �y	 is used to
indicate that this was not achieved in ��� steps� Right preconditioning� �� Krylov
basis vectors and a zero initial guess were used� The right�hand side was provided
with the matrix�
Since the local preconditioners have di�erent costs� Tables � and � show the CPU

timings �system and user times	 for BSSOR����� and BTIF� The tests were run on
one processor of a Sun Sparcstation �� For this particular problem and choice of
partitioning� the ILU local preconditioners required the least total CPU time with
BSSOR������ With BTIF� an exact solve was most e
cient �i�e�� the preconditioner
was an exact solve	�

Table �� Number of GMRES steps for solving the SHERMAN� problem with block relaxation
global preconditioners and various local preconditioners�

BJacobi BSOR�	�
	� BSOR�	�
�� BSSOR�	�
	� BSSOR�	�
��

LP INVERSE �� � �� � �	
LP RILUK��
��� �	 �� �	 �� �
LP RILUK�	
��� �� 	 � � ��
LP ILUT��
��� �� �	 � 	��
LP TRIDIAG �	� ��� �� y ��
LP SOR�	�
	� y �� y y ��
LP SSOR�	�
	� ��� �� 	�� y ��
LP GMRES�	�
��	� �� � �� 	� ��
LP APINVS�� ��� �� �� �� ��
LP APINV� ��� �	� ��� y ���

Object�Oriented Block Preconditioning �
�

Table �� Number of GMRES steps and timings for solving the SHERMAN� problem with
BSSOR�	�
�� and various local preconditioners�

BSSOR�	�
�� CPU time �s�
precon solve total

LP INVERSE �	 ���	 	��� ��
LP RILUK��
��� � ���� ���� ����
LP RILUK�	
��� �� ���� ���� ����
LP ILUT��
��� ���	 ���	 ����
LP TRIDIAG �� ���� 	��� 	���
LP SOR�	�
	� �� ���� ����� �����
LP SSOR�	�
	� �� ���� ���� ����
LP GMRES�	�
��	� �� ���� ����	 ����	
LP APINVS�� �� ���� ��� ����
LP APINV� ��� ���� ���� ����

Table �� Number of GMRES steps and timings for solving the SHERMAN� problem with block

incomplete factorization and various local preconditioners�
BTIF CPU time �s�

precon solve total

LP INVERSE � �� ���� ����
LP DIAG y ���� y y

LP APINV� ��	 ���� 	��	 ���
LP APINVS�� � ��	� ���� ��	�
LP APINVS�	�� 		 ��� ���� ����

Tables � and show the number of GMRES steps for the BARTHT�A matrix�
A random right�hand side was used� and the initial guess was zero� The GMRES
tolerance was ��� and �� Krylov basis vectors were used� In Table �� block
incomplete factorization was used as the global preconditioner� and LU factorization
was used as the local preconditioner� In Table � block SSOR with one iteration
and � � was used as the global preconditioner� and level�� ILU was used as the
local preconditioner�

Table ��� Number of GMRES steps for solving the BARTHT�A problem with BILUK�LP LU�

block BILUK level
size � � �

� 	� ��	 �	�
�� �� ��� ��
�� �� ��� �

Tables � and � show the results for WIGTO��� using block incomplete factor�
ization� The right�hand side was the vector of all ones� and the GMRES tolerance
was ���� The other parameters were the same as those in the previous experiment�
The failures in Table � are due to inaccuracy for low �ll levels� and instability for
high levels� In Table �� LP SVD�������� used as the local preconditioner gave the

� � E� Chow and M� A� Heroux

Table ��� Number of GMRES steps for solving the BARTHT�A problem with
BSSOR�	�
	��LP RILUK��
����

block GMRES
size steps

�� ���
��� ��	
�� ���

best results� LP SVD�������� indicates that the singular values of the pivot blocks
were thresholded at �� times the largest singular value�

Table ��� Number of GMRES steps for solving the WIGTO��� problem with BILUK�LP INVERSE�
block BILUK level
size � � � 	

 y y y y

� y y � ��
�� y �� �� y

Table �	� Number of GMRES steps for solving the WIGTO��� problem with
BILUK�LP SVD���	
����

block BILUK level
size � � � 	

 �� � 	� 	�
� 	� 	� 	�
�� � 	� 	� 	�

Now we show some results with block tridiagonal incomplete factorization pre�
conditioners using general sparse approximate inverses� The matrix FIDAP�� was
partitioned into a block tridiagonal system using a constant block size of � �the
last block has size �	� Since the matrix arises from a �nite element problem� a
more careful selection of the partitioning could have yielded better results�
The rows of the system were scaled by their ��norms� and then their columns

were scaled similarly� since the matrix contains di�erent equations and variables�
A Krylov subspace size of �� for GMRES was used� The right�hand side was con�
structed so that the solution is the vector of all ones� We compare the result with
the pair of global�local preconditioners BILUK����LP SVD��������� using a block
size of � �LP SVD�������� gave the best result after several trials	� Table � shows
the number of GMRES steps to convergence� timings for setting up the precondi�
tioner and for the iterations� and the number of nonzeros in the preconditioner�
The experiments were carried out on one processor of a Sun Sparcstation ��
The timings show that some combinations of the BTIF global preconditioner with

the APINVS local preconditioner are comparable to BILUK����LP SVD��������� but
use much less memory� since only the approximate inverses of the pivot blocks need
to be stored� Although the actual number of nonzeros in the matrix is ��� ����
there were �� ��� block nonzeros required for BILUK� and therefore almost a million

Object�Oriented Block Preconditioning �
	

Table �� Test results for the FIDAP��� problem�
GMRES CPU time �s� nonzeros

steps precon solve total in precon

BILUK����LP SVD���
��� �� ����� �	��� ������ ��	 ���
BTIF�LP APINVS�	�� ��� ����� ��	�� ������ ��� ���
BTIF�LP APINVS�� 	�� ��� ����	 �	���� �� ���

entries which were needed to be stored� The APINVSmethod produced approximate
inverses that were sparser than the original pivot blocks� See �Chow and Saad ����
for more details�
There is often heated debate over the use of C�� in scienti�c computing� Ideally�

C�� and Fortran �� programs that are coded similarly should perform similarly�
However� by using object�oriented features in C�� to make a programmore �exible
and maintainable� researchers usually encounter a � to �� percent performance
penalty �Jiang and Forsyth ����� If optimized kernels such as the BLAS are called�
then the C�� performance penalty can be very small for large problems� as a larger
fraction of the time is spent in the kernels�
Since C�� and Fortran �� programs will usually be coded di�erently� a prac�

tical comparison is made when a general code such as BPKIT is compared to a
specialized Fortran �� code� Here we compare BPKIT to an optimized block SSOR
preconditioner with a GMRES accelerator� This code performs block relaxations
of the form

� � A��ii ri

xi � xi � �

r � r �A��i�

for a block row i� where Aii is the i�th diagonal block of A� A��i is the i�th block
column of A� xi is the i�th block of the current solution� and r is the current residual
vector� Notice that the update of the residual vector is very fast if A is stored by
sparse columns and not by blocks� Since BPKIT stores the matrix A by blocks for
�exibility� it is interesting to see what the performance penalty would be for this
case�
Tables � and � show the timings for block SSOR on a Sun Sparcstation �

and a Cray C�� supercomputer� for the WIGTO��� matrix� In this case� the right�
hand side was constructed so that the solution is a vector of all ones� the other
parameters were the same as before� All programs were optimized at the highest
optimization level� clock was used to measure CPU time �user and system	 for
the C�� programs� and etime and timef were used to measure the times for the
Fortran �� programs on the Sun and Cray computers� respectively� One step of
block SSOR with � � ��� was used in the tests� The local preconditioner was an
exact LU factorization� Results are shown for a large range of block sizes� and in
the case of BPKIT� for both DENSE and CSR storage schemes for the blocks� The last
column of each table gives the average time to perform one iteration of GMRES�
The results show that the specialized Fortran �� code has better performance over

a wide range of block sizes� This is expected because the update of the residual�
which is the most major computation� is not a�ected by the blocking�

�� � E� Chow and M� A� Heroux

If dense blocks are used� BPKIT can be competitive on the Cray by using large
block sizes� such as ��� Blocks of this size contain many zero entries which are
treated as general nonzero entries when a dense storage scheme is used� However�
vectorization on the Cray makes operations with large dense blocks much more
e
cient�
If sparse blocks are used� BPKIT can be competitive on the workstation with

moderate block sizes of � or �� Operations with smaller sparse blocks are ine
cient�
while larger blocks imply larger LU factorizations for the local preconditioner�
This comparison using block SSOR is dramatic since two very di�erent data

structures are used� Comparisons of level�based block ILU in C�� and Fortran
�� show very small di�erences in performance� since the data structures used are
similar �Jiang and Forsyth �����
In conclusion� the types and sizes of blocks must be chosen carefully in BPKIT

to attain high performance on a particular machine� The types and sizes of blocks
should also be chosen in conjunction with the requirements of the preconditioning
algorithm and the block structure of the matrix� Based on the above experiments�
Table � gives an idea of the approximate block sizes that should be used for
BPKIT� given no other constraints�

�� CONCLUDING REMARKS

This article has described an object�oriented framework for block preconditioning�
Polymorphism was used to handle di�erent block types and di�erent local precon�
ditioners� Block types and local preconditioners form a �kernel� on which the block
preconditioners are built� Block preconditioners are written in a syntax compara�
ble to that for non�block preconditioners� and they work for matrices containing
any block type� BPKIT is easily extensible� as an object�oriented code would al�
low� We have distinguished between explicit and implicit local preconditioners� and
deduced the operations and semantics that are useful for polymorphically manipu�
lating blocks� Timings against a specialized and optimized Fortran �� code on both
workstations and Cray supercomputers show that this framework can approach the
e
ciency of such a code� as long as suitable block sizes and block types are chosen�
We believe we have found a suitable compromise between Fortran ���like perfor�
mance and C�� �exibility� A signi�cant contribution of BPKIT is the collection
of high�quality preconditioners under a common� concise interface�
Block preconditioners can be more e
cient and more robust than their non�block

counterparts� The block size parameterizes between a local and global method� and
is valuable for compromising between accuracy and cost� or combining the e�ect of
two methods� The combination of local and global preconditioners leads to a variety
of useful methods� all of which may be applicable in di�erent circumstances�

ACKNOWLEDGMENTS

We wish to thank Yousef Saad� Kesheng Wu and Andrew Chapman for their codes
and for helpful discussions� We also wish to thank Larry Wigton and Tim Barth
for providing some of the test matrices� and Tim Peck for helping us with editing�
This article has bene�ted substantially from the comments and suggestions of one
of the anonymous referees� and we are grateful for his time and patience�

Object�Oriented Block Preconditioning � �

Table ��� WIGTO���� BSSOR���
	��LP LU� Sun Sparc �� timings�
Specialized Fortran �� program

block GMRES time �s�
size steps precon solve total average

 ��� ���� ��	��� ����� ��	���
� �� ���� ���� ����� ��	���

�� 	�� ��� ������ ������ ��	���
	� 	�� ���� ���� �����	 �����
� ��� ���� ��	��� ������ �����
��� ��� 	��� ����� ������ ����	�

BPKIT� dense blocks

block GMRES time �s�
size steps precon solve total average

 ��� ���� 	����� 	����� �����
� �� ���� ������ ����� �����
�� 	�� ��	� ��	��� ���	� ���	��
	� 	�� ���	 	�	��� 	�	��	 ������
� ��� ���� 	����� 	����� ������
��� ��� 	��� ������ ������ ����	

BPKIT� sparse blocks

block GMRES time �s�
size steps precon solve total average

 ��� ��� ����� ����	 ������

� �� ��	 ������ ������ ����
�� 	�� ���� ������ �	���� �����
	� 	�� ���� �	���� �	���� �����
� ��� ���� ��	�	 ������ ������
��� ��� �� ������ ������ ������

�� � E� Chow and M� A� Heroux

Table ��� WIGTO���� BSSOR���
	��LP LU� Cray C�� timings�
Specialized Fortran �� program

block GMRES time �s�
size steps precon solve total average

 ��� ����� �	��� ���� ������
� �� ����� ���� ��� ����	�
�� 	�� ����� ���� ���� ����	�
	� 	�� ����� ���� ���� ����	�
� ��� ���� ���	 ���� ������
��� ��� ����� ���	 ���	 ���	��

BPKIT� dense blocks

block GMRES time �s�
size steps precon solve total average

 ��� ����� ��	��� ���� ��	���
� �� ����� 	���� 	���� ������
�� 	�� ����� ����� ����	 ������
	� 	�� ����� ����� ����� �����	
� ��� ����� ��� ��	� ���	��
��� ��� ����� ���	 ���	 ���		�

BPKIT� sparse blocks

block GMRES time �s�
size steps precon solve total average

 ��� ���� ����	� ������ ������
� �� ��	� ����� ����� ��	���
�� 	�� ���	 ������ ������ ��	���
	� 	�� ��	� ����� ������ ��	���
� ��� �� ����� ������ �����
��� ��� ��	� �	���� �	��	� �����

Table ��� Recommended block sizes�
Block type Sun Cray

DENSE � ���
CSR �� ��

Object�Oriented Block Preconditioning � ��

REFERENCES

Axelsson� O� ���� Iterative Solution Methods� Cambridge University Press� Cambridge�

Axelsson� O�� Brinkkemper� S�� and Il�in� V� P� ���� On some versions of incomplete
block�matrix factorization iterative methods� Lin� Alg� Appl� ��� 	����

Barrett� R�� Berry� M�� Chan� T�� Demmel� J�� Donato� J�� Dongarra� J�� Eijkhout� V��

Pozo� R�� Romine� C�� and van der Vorst� H� ���� Templates for the Solution of
Linear Systems� Building Blocks for Iterative Methods� SIAM� Philadelphia� PA�

Bruaset� A� M� and Langtangen� H� P� ����� Object�oriented design of preconditioned
iterative methods in Di�pack� ACM Trans� Math� Softw� �	� ������

Carney� S�� Heroux� M� A�� Li� G�� and Wu� K� ���� A revised proposal for a sparse
BLAS toolkit� Technical Report ���	� Army High Performance Computing Research Cen�
ter� Minneapolis� MN�

Chow� E� and Heroux� M� A� ����� BPKIT Block preconditioning toolkit� Technical Re�
port UMSI �����	� Minnesota Supercomputer Institute� University of Minnesota� Min�
neapolis� MN�

Chow� E� and Saad� Y� ����� Approximate inverse techniques for block�partitioned ma�
trices� SIAM J� Sci� Comput�
�� to appear�

Chow� E� and Saad� Y� ����� Approximate inverse preconditioners via sparse�sparse iter�
ations� SIAM J� Sci� Comput�
�� to appear�

Clay� R� L� ����� ISIS��� iterative scalable implicit solver �in C���� Sandia National
Laboratories� Livermore� CA�

Concus� P�� Golub� G� H�� and Meurant� G� ����� Block preconditioning for the conju�
gate gradient method� SIAM J� Sci� Statist� Comput� �� 	���		��

Demmel� J� ����� LAPACK� A portable linear algebra library for supercomputers� In Proc�

��� IEEE Control Systems Society Workshop on Computer�Aided Control System Design
�December ������

Dongarra� J� J�� Croz� J� D�� Hammarling� S�� and Duff� I� ����� A set of level 	 basic
linear algebra subprograms� ACM Trans� Math� Softw�
�� �����

Dongarra� J� J�� Lumsdaine� A�� Niu� X�� Pozo� R�� and Remington� K� ���� A sparse
matrix library in C�� for high performance architectures� In Proc� Object Oriented Nu�
merics Conference �Sun River� OR� �����

Dongarra� J� J�� Pozo� R�� and Walker� D� W� ���	� An object oriented design for high
performance linear algebra on distributed memory architectures� In Proc� Object Oriented
Numerics Conference �Snowbird� CO� ���	��

Duff� I� S�� Grimes� R� G�� and Lewis� J� G� ����� Sparse matrix test problems� ACM
Trans� Math� Softw�
�� ����

Eijkhout� V� ����� ParPre� A parallel preconditioners package� Manuscript�

Eisenstat� S� C� ����� E�cient implementation of a class of preconditioned conjugate
gradient methods� SIAM J� Sci� Statist� Comput� �� ���

Fan� Q�� Forsyth� P� A�� McMacken� J� R� F�� and Tang� W��P� ����� Performance
issues for iterative solvers in device simulation� SIAM J� Sci� Comput�
� ��������

Jiang� H� and Forsyth� P� A� ����� Robust linear and nonlinear strategies for solution of
the transonic Euler equations� Computers � Fluids ��� ��	�����

Jones� M� T� and Plassmann� P� E� ����� BlockSolve�� users manual� Scalable library
software for the parallel solution of sparse linear systems� Technical Report ANL������
Argonne National Laboratory� Argonne� IL�

Kolotilina� L� Yu�� Kaporin� I� E�� and Yeremin� A� Yu� ����� Block SSOR precon�
ditionings for high�order 	D FE systems� Incomplete BSSOR preconditionings� Lin� Alg�
Appl�
���
��� ������

Kolotilina� L� Yu� and Yeremin� A� Yu� ����� On a family of two�level preconditionings
of the incomplete block factorization type� Soviet J� Numer� Anal� Math� Model�
� ��	�	���

Machiels� L� and Deville� M� O� ����� Fortran ��� An entry to object�oriented program�
ming for solution of partial di�erential equations� ACM Trans� Math� Softw� �	� 	����

�� � E� Chow and M� A� Heroux

Remington� K� A� and Pozo� R� ����� NIST sparse BLAS user�s guide� Technical report�

National Institute of Standards and Technology� Gaithersburg� Maryland�

Saad� Y� ����� SPARSKIT� A basic tool kit for sparse matrix computations� Technical
Report ������ Research Institute for Advanced Computer Science� NASA Ames Research
Center� Mo�ett Field� CA�

Saad� Y� ���	� A �exible inner�outer preconditioned GMRES algorithm� SIAM J� Sci�
Statist� Comput�
�� ������

Saad� Y� ���� ILUT� A dual threshold incomplete ILU factorization� Num� Lin� Alg�
Appl�
� 	������

Saad� Y� ����� Iterative Methods for Sparse Linear Systems� PWS Publishing� New York�

Smith� B�� Gropp� W�� and McInnes� L� C� ����� PETSc ��� users� manual� Technical
Report ANL������� Argonne National Laboratory� Argonne� IL�

Stroustrup� B� ����� The C�� Programming Language �� ed��� Addison�Wesley� Reading�
MA�

Underwood� R� R� ����� An approximate factorization procedure based on the block
Cholesky decomposition and its use with the conjugate gradient method� Technical Re�
port NEDO���	��� General Electric Co�� Nuclear Energy Div�� San Jose� CA�

Wu� K� and Li� G� ����� BKAT� An object�oriented block Krylov accelerator toolkit�
Presentation at Cray Research� Inc� Available from kewu�kjwu�lbl�gov�

Yeremin� A� Yu� ����� Private communication�

