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�� INTRODUCTION

In the iterative solution of the linear system

Ax � b�

a preconditioner M is often used to transform the system into one which has better
convergence properties� for example� in the left�preconditioned case�

M��Ax �M��b�

M�� is referred to as the preconditioning operator for the matrix A and� in general�
is a sequence of operations that somehow approximates the e�ect of A�� on a
vector�
Unfortunately� general software for preconditioning is seriously lagging behind

methods being published in the literature� Part of the reason is that many methods
do not have general applicability� they are not robust on general problems� or they
are specialized and need speci�c information �e�g�� general direction of �ow in a
�uids simulation	 that cannot be provided in a general setting�
Another reason� one that we will deal with in this article� is that speci�c lin�

ear systems need speci�c matrix and preconditioner data structures in order to be
solved e
ciently� i�e�� there need to be multiple implementations of a preconditioner
with specialized data structures� For example� in some �nite element applications�
diagonal blocks have a particular but �xed sparse structure� A block SSOR precon�
ditioner that needs to invert these diagonal blocks should use an algorithm suited
to this structure� A block SSOR code that treats these diagonal blocks in a general
way is not ideal for this problem�
When we encounter linear systems from di�erent applications� we need to deter�

mine suitable preconditioning strategies for their iterative solution� Rather than
code preconditioners individually to take advantage of the structure in each appli�
cation� it is better to have a framework for software reuse� Also� a wide range of
preconditionings should be available so that we can choose a method that matches
the di
culty of the problem and the computer resources available�
This article presents a framework to support preconditioning with various� possi�

bly user�de�ned� data structures for matrices that are partitioned into blocks� The
main idea is to de�ne data structures �called block types	 for the blocks� and an
upper layer of software which uses these blocks transparently of their data struc�
ture� Thus various preconditioners� such as block relaxations and block incomplete
factorizations� only need to be de�ned once� and will work with any block type�
These preconditioners are called global preconditioners for reasons that will soon
become apparent� The code for these preconditioners is almost as readable as the
code for their pointwise counterparts� New global preconditioners can be added in
the same fashion�
Global preconditioners need methods �called local preconditioners	 to approxi�

mately or exactly invert pivot blocks� or solve systems whose coe
cient matrices
are diagonal blocks� For example� a block stored in a sparse format might be in�
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verted exactly� or an approximate inverse might be computed� Our design permits
a variety of these inversion or solution techniques to be de�ned for each block type�

The transparency of the block types and local preconditioners can be imple�
mented through polymorphism in an object�oriented language� Our framework�
called BPKIT� currently implements block incomplete factorization and block re�
laxation global preconditioners� a dense and a sparse block type� and a variety of
local preconditioners for both block types� Users of BPKIT will either use the block
types that are available� or add block types and local preconditioners that are ap�
propriate for their applications� Users may also de�ne new global preconditioners
that take advantage of the existing block types and local preconditioners� Thus
BPKIT is not intended to be complete library software� rather it is a framework
under which software can be specialized from relatively generic components�
It is appropriate to make some comments about why we use block preconditioning�

Many linear systems from engineering applications arise from the discretization
of coupled partial di�erential equations� The blocking in these systems may be
imposed by ordering together the equations and unknowns at a single grid point� or
those of a subdomain� In the �rst case� the blocks are usually dense� in the latter
case� they are usually sparse� Experimental tests suggest it is very advantageous for
preconditionings to exploit this block structure in a matrix �Chow and Saad 
����
Fan et al� 
���� Jones and Plassmann 
���� Kolotilina et al� 
��
�� The relative
robustness of block preconditioning comes partly from being able to solve accurately
for the strong coupling within these blocks� From a computational point of view�
these block matrix techniques can be more e
cient on cached and hierarchical
memory architectures because of better data locality� In the dense block case�
block matrix data structures also require less storage� Block data structures are
also amenable to graph�based reorderings and block scalings�

When approximations are also used for the diagonal or pivot blocks �i�e�� ap�
proximations with local preconditioners are used	� these techniques are speci�cally
called two�level preconditioners �Kolotilina and Yeremin 
����� and o�er a middle�
ground between accuracy and simpler computations� Beginning with �Underwood�
in 
��� and then �Axelsson et al� 
���� and �Concus et al� 
���� more than a decade
ago� these preconditioners have been motivated and analyzed in the case of block
tridiagonal incomplete factorizations combined with several types of approximate
inverses� and have recently reached a certain maturity� Most implementations of
these methods� however� are not �exible� they are often coded for a particular block
size and inversion technique� and further� they are almost always coded for dense
blocks�

The software framework presented here derives its �exibility from the use of an
object�oriented language� We chose to use C�� �Stroustrup 
��
� in real� ���bit
arithmetic� Other object�oriented languages are also appropriate� The framework
is computationally e
cient� since all operations involving blocks are performed with
code that employs fundamental types� or with optimized Fortran �� libraries such
as the Level � BLAS �Dongarra et al� 
����� LAPACK �Demmel 
����� and the
sparse BLAS toolkit �Carney et al� 
����� By the same token� users implementing
block types and local preconditioners may do so in practically any language� as long
as the language can be linked with C�� by their compilers� BPKIT also has an
interface for Fortran �� users�
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BPKIT is available at http���www�cs�umn�edu��chow�bpkit�html� Other C��
e�orts in the numerical solution of linear equations include LAPACK�� �Dongarra
et al� 
���� for dense systems� and Di�pack �Bruaset and Langtangen 
����� ISIS��
�Clay 
����� SparseLib�� and IML�� �Dongarra et al� 
���� for sparse systems�
It is also possible to use an object�oriented style in other languages �Eijkhout 
����
Machiels and Deville 
���� Smith et al� 
�����
In Section �� we discuss various issues that arise when designing interfaces for

block preconditioning and for preconditioned iterative methods in general� We
describe the speci�cation of the block matrix� the global and local preconditioners�
the interface with iterative methods� and the Fortran �� interface� In Section ��
we describe the internal design of BPKIT� including the polymorphic operations
on blocks that are needed by global preconditioners� In Section �� we present the
results of some numerical tests� including a comparison with an optimized Fortran
�� code� Section � contains concluding remarks�

�� INTERFACES FOR BLOCK PRECONDITIONING

We have attempted to be general when de�ning interfaces �to allow for extensions
of functionality	� and we have attempted to accept precedents where we overlap
with related software �particularly in the interface with iterative methods	� For
concreteness� we describe several methods which will be used in the numerical tests�
Section � brings to light various issues in the software design of preconditioned
iterative methods�

��� Block matrices

A matrix that is partitioned into blocks is called a block matrix� Although with
BPKIT any storage scheme may be used to store the blocks that are not zero� the
locations of these blocks within the block matrix must still be de�ned� The block
matrix class �data type	 that is available in BPKIT� called BlockMat� contains a
pointer to each block in the block matrix� The pointers for each row of blocks �block
row	 are stored contiguously� with additional pointers to the �rst pointer for each
block row� This is the analogy to the compressed sparse row data structure �Saad

���� for pointwise matrices� pointers point to blocks instead of scalar entries�
The global preconditioners in BPKIT assume that the BlockMat class is being
used� It is possible for users to design new block matrix classes and to code new
global preconditioners for their problems� and still use the block types and local
preconditioners in BPKIT�
For the block matrix data structure described above� BPKIT provides conversion

routines to that data structure from the Harwell�Boeing format �Du� et al� 
�����
There is one conversion routine for each block type �e�g�� one routine will convert
a Harwell�Boeing matrix into a block matrix whose blocks are dense	� However�
these routines are provided for illustration purposes only� In practice� a user�s
matrix that is already in block form �i�e�� the nonzero entries in each block are
stored contiguously	 can usually be easily converted by the user directly into the
BlockMat form�
To be general� the conversion routines allow two levels of blocking� In many prob�

lems� particularly linear systems arising from the discretization of coupled partial
di�erential equations� the blockings may be imposed by ordering together the equa�
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tions and unknowns at a single grid point and those of a subdomain� The latter
blocking produces coarse�grain blocks� and the smaller� nested blocks are called
�ne�grain blocks� Figure 
 shows a block matrix of dimension �� with coarse blocks
of dimension � and �ne blocks of dimension ��

Fig� �� Block matrix with coarse and �ne blocks�

The blocks in BPKIT are the coarse blocks� Information about the �ne blocks
should also be provided to the conversion routines because it may be desirable to
store blocks such that the coarse blocks themselves have block structure� For ex�
ample� the variable block row �VBR	 �Saad 
���� storage scheme can store coarse
blocks with dense �ne blocks in reduced space� Optimized matrix�vector product
and triangular solve kernels for the VBR and other block data structures are pro�
vided in the sparse BLAS toolkit �Carney et al� 
���� Remington and Pozo 
�����
No local preconditioners or block operations� however� are de�ned for �ne blocks
�i�e�� there are not two levels of local preconditioners	�
It is apparent that the use of very small coarse blocks will degrade computing

performance due to the overhead of procedure calls� Larger blocks can give better
computational e
ciency and convergence rate in preconditioned iterative methods�
and computations with large dense blocks can be vectorized� In this article� we will
rarely have need to mention �ne blocks� thus� when we refer to �blocks� with no
distinction� we normally mean coarse blocks�
To be concrete� we give an example of how a conversion routine is called when a

block matrix is de�ned� The statement

BlockMat B��HBfile�� �� DENSE�	
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de�nes B to be a square block matrix where the blocks have dimension �� and the
blocks are stored in a format indicated by DENSE �which is of a C�� enumerated
type	� The other block type that is implemented is CSR� which stores blocks in
the compressed sparse row format� The matrix is read from the �le HBfile� which
must be encoded in the standard Harwell�Boeing format �Du� et al� 
����� �The
dimension of the matrix does not need to be speci�ed in the declaration since it is
stored within the �le�	 To specify a variable block partitioning �with blocks with
di�erent sizes	� other interfaces are available which use vectors to de�ne the coarse
and �ne partitionings�

��� Specifying the preconditioning

A preconditioning for a block matrix is speci�ed by choosing

�
	 a global preconditioner� and

��	 a local preconditioner for each diagonal or pivot block to exactly or approxi�
mately invert the block or solve the corresponding set of equations�

For example� to fully de�ne the conventional block Jacobi preconditioning� one must
specify the global preconditioner to be block Jacobi and the local preconditioner to
be LU factorization�
In addition� the block size of the matrix has a role in determining the e�ect of

the preconditioning� At one extreme� if the block size is one� then the precondition�
ing is entirely determined by the global preconditioner� At the other extreme� if
there is only one block� then the preconditioning is entirely determined by the local
preconditioner� The block size parameterizes the e�ect and cost between the se�
lected local and global preconditioners� The best method is likely to be somewhere
between the two extremes�
For example� suppose symmetric successive overrelaxation �SSOR	 is used as the

global preconditioner� and complete LU factorization is used as the local precondi�
tioner� For linear systems that are not too di
cult to solve� SSOR may be used with
a small block size� For more challenging systems� larger block sizes may be used�
giving a better approximation to the original matrix� In the extreme� the matrix
may be treated as a single block� and the method is equivalent to LU factorization�
A global preconditioner M is speci�ed with a very simple form of declaration� In

the case of block SSOR� the declaration is

BSSOR M	

Two functions are used to specify the local preconditioner and to provide parameters
to the global preconditioner�

M�localprecon�LP
LU�	 �� LU factorization for the blocks

M�setup�B� ���� 
�	 �� BSSOR�omega����� iterations�
�

Here B is the block matrix de�ned as in Section ��
� The setup function provides
the real data to the preconditioner� and performs all the computations necessary
for setting up the global preconditioner� for example� the computation of the LU
factors in this case� Therefore� localprecon must be called before setup� The
setup function must be called again if the local preconditioner is changed� In these
interfaces� the same local preconditioner is speci�ed for all the diagonal blocks�
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In general� however� the local preconditioners are not required to be the same� In
some applications� di�erent variables �e�g�� velocity and pressure variables in a �uids
simulation	 may be blocked together� It may then make sense to write a specialized
global preconditioner with an interface that allows di�erent local preconditioners
to be speci�ed for each block�

����
 Global preconditioners� The global preconditioners that we have imple�
mented in BPKIT are listed in Table 
� along with the arguments of the setup

function� and any default argument values� General reference works describing
these global preconditioners and many of the local preconditioners described later
are �Axelsson 
���� Barrett et al� 
���� Saad 
����� See also the BPKIT Reference

Manual �Chow and Heroux 
����� Here we brie�y specify these preconditioners and
make a few comments on how they may be applied�

Table �� Global preconditioners�
setup arguments

BJacobi none
BSOR omega����� iterations��
BSSOR omega����� iterations��
BILUK level
BTIF none

BJacobi� BSOR and BSSOR are block versions of the diagonal� successive overrelax�
ation� and symmetric successive overrelaxation preconditioners� BILUK is a block
version of level�based incomplete LU �ILU	 factorization� BTIF is an incomplete
factorization for block tridiagonal matrices�
A preconditioner for a matrix A is often expressed as another matrix M which is

somehow an approximation to A� However�M does not need to be explicitly formed�
but instead� only the operation of M�� on a vector is required� This operation
is called the preconditioning operation� or the application of the preconditioner�
For iterative methods based on biorthogonalization� the transposed preconditioning
operator M�T is also needed�
It is also possible to apply the preconditioner in a split fashion when the pre�

conditioner has a factored form� For example� if M is factored as LU � then the
preconditioned matrix is L��AU��� and the operations of L�� and U�� on a vector
are required�
Many preconditioners M can be expressed in factored form� Consider the split�

ting of a block matrix A�

A � DA � LA � UA

where DA is the block diagonal of A� �LA is the strictly lower block triangular
part� and �UA is the strictly upper part� The block SSOR preconditioner in the
case of one iteration is de�ned by

M �



���� �	
�DA � �LA	DA

���DA � �UA	�
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The scale factor 
������	 is important if the iterative method is not scale invariant�
When used as a preconditioner� the relaxation parameter � is usually chosen to be

� since selecting a value is di
cult� However� if more than one iteration is used and
the matrix is far from being symmetric and positive de�nite� underrelaxation may
be necessary to prevent divergence� Also� the simpler block SOR preconditioner
�with one iteration	

M �



�
�DA � �LA	

may be preferable over block SSOR if A is nonsymmetric� If k iterations of block
SOR are used� the preconditioner has the form

M �



�
�DA � �LA	

�
k��X
i��

��DA � �LA	
����UA � �
� �	DA	�

i

�
��

although it is not implemented this way� Instead� the preconditioner is applied to
a vector v by performing k SOR iterations on the system Aw � v starting from the
zero vector�
The level�� block ILU preconditioner for certain structured matrices including

block ��point matrices can be written in a very similar form

M � �D � LA	D
���D � UA	

called the generalized block SSOR form� Here� D is the block diagonal matrix
resulting from the incomplete factorization� In general� however� a level�based block
ILU preconditioner is computed by performing Gaussian elimination and neglecting
elements in the factors that fall out of a predetermined sparsity pattern� Level�based
ILU preconditioners are much more accurate than relaxation preconditioners� but
for general sparse matrices� have storage costs at least that of the original matrix�
Incomplete factorization of block tridiagonal matrices is popular for certain struc�

tured matrices where the blocks have banded structure� It is a special case of the
generalized block SSOR form� and thus only a sequence of diagonal blocks needs to
be computed and stored� The block partitioning may be along lines of a ��D grid�
or along planes of a ��D grid� In general� any �striped� partitioning will yield a
block tridiagonal matrix� The inverse�free form of block tridiagonal factorization is

M � �D�� � LA	�I �DUA	

where D is a block diagonal matrix whose blocks Di are de�ned by the recurrence

Di � �Ai�i �Ai�i��Di��Ai���i	
��

starting with D� � �� This inverse�free form only requires matrix�vector multipli�
cations in the preconditioning operation� However� the blocks are typically very
large� and an approximate inverse is used in place of the exact inverse in the above
equation to make the factorization incomplete� Many techniques for computing
approximate inverses are available �Chow and Saad 
�����

����� Local preconditioners� Local preconditioners are either explicit or implicit

depending on whether �approximate	 inverses of blocks are explicitly formed� An
example of an implicit local preconditioner is LU factorization�



Object�Oriented Block Preconditioning � 	

The global preconditioners that involve incomplete factorization require the in�
verses of pivot blocks� For large block sizes� the use of approximate or exact dense
inverses usually requires large amounts of storage and computation� Thus sparse
approximate inverses should be used in these cases� Implicit local preconditioners
produce inverses that are usually dense� and are therefore usually not computa�
tionally useful for block incomplete factorizations� This use of implicit local pre�
conditioners is disallowed within BPKIT� We also apply this rule for small block
sizes� since dense exact inverses are usually most e
cient in these cases� �Note
that the explicit local preconditioner LP INVERSE for the CSR block type is meant
to be used for testing purposes only� Also� if an exact factorization is sought� it
is usually most e
cient to use an LU factorization on the whole matrix�	 The
global preconditioners that involve block relaxation may use either explicit or im�
plicit local preconditioners� but usually the implicit ones are used� Explicit local
preconditioners can be appropriate for block relaxation when the blocks are small�
Local preconditioners are also di�erentiated by the type of the blocks on which

they operate� Not all local preconditioners exist for all block types� incomplete
factorization� for example� is only meaningful for sparse types� Thus� a local pre�
conditioner must be chosen that matches the type of the block�
BPKIT requires the user to be aware of the restrictions in the above two para�

graphs when selecting a local preconditioner� Due to the dynamic binding of C��
virtual functions� violations of these restrictions will only be detected at run�time�
Table � lists the local preconditioners that we have implemented� along with their

localprecon arguments� their block types� and whether the local preconditioner
is explicit or implicit� In contrast to the setup function� localprecon takes no
default arguments� We have included an explicit exact inverse local preconditioner
for the CSR format for comparison purposes �it would be ine
cient to use it in block
tridiagonal incomplete factorizations� for example	�

Table �� Local preconditioners�
localprecon arguments Block type Expl��Impl�

LP LU none DENSE implicit
LP INVERSE none DENSE explicit
LP SVD alpha�� alpha� DENSE explicit

LP LU none CSR implicit
LP INVERSE none CSR explicit
LP RILUK level� omega CSR implicit
LP ILUT l�l� threshold CSR implicit
LP APINV TRUNC semibw CSR explicit
LP APINV BANDED semibw CSR explicit
LP APINV� none CSR explicit
LP APINVS l�l CSR explicit
LP DIAG none CSR explicit
LP TRIDIAG none CSR implicit
LP SOR omega� iterations CSR implicit
LP SSOR omega� iterations CSR implicit
LP GMRES restart� tolerance CSR implicit

LP LU is an LU factorization with pivoting� LP INVERSE is an exact inverse com�
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puted via LU factorization with pivoting� LP RILUK is level�based relaxed incom�
plete LU factorization� LP ILUT is a threshold�based ILU with control over the
number of �ll�ins �Saad 
����� which may be better for inde�nite blocks� The local
preconditions pre�xed with LP APINV are new approximate inverse techniques� see
�Chow and Saad 
���� and �Chow and Heroux 
���� for details�
LP DIAG is a diagonal approximation to the inverse� using the diagonal of the

original block� and LP TRIDIAG is a tridiagonal implicit approximation� ignoring
all elements outside the tridiagonal band of the original block� LP SVD uses the
singular value decomposition X � U�V T to produce a dense approximate inverse
X�� � V ����UT � where �� is � with its singular values thresholded by ���� � ���
a constant �� plus a factor �� of the largest singular value ��� This may produce a
more stable incomplete factorization if there are many blocks to be inverted that are
close to being singular �Yeremin 
����� LP SOR� LP SSOR and LP GMRES are iterative
methods used as local preconditioners�

��� Interface with iterative methods

An object�oriented preconditioned iterative method requires that matrix and pre�
conditioner objects de�ne a small number of operations� In BPKIT� these opera�
tions are de�ned polymorphically� and are listed in Table ��
For left and right preconditionings� the functions apply and applyt may be

used to apply the preconditioning operator �M��� or its transpose	 on a vector�
Split �also called two�sided� or symmetric	 preconditionings use applyl and applyr

to apply the left and right parts of the split preconditioner� respectively� For an
incomplete factorization A � LU � applyl is the L�� operation� and applyr is the
U�� operation� To anticipate all possible functionality� the applyc function de�nes
a combined matrix�preconditioner operator to be used� for example� to implement
the Eisenstat trick �Eisenstat 
��
�� If the Eisenstat trick is used with �exible
preconditionings �described at the end of this section	� the right preconditioner
apply also needs to be used�
Two functions not listed here are matrix member functions that return the row

and column dimensions of the matrix� which are useful for the iterative method
code to help preallocate any work�space that is needed�
Not all the operations in Table � may be de�ned for all matrix and preconditioner

objects� and many iterative methods do not require all these operations� The
GMRES iterative method� for example� does not require the transposed operations�
and the relaxation preconditioners usually do not de�ne the split operations� This
is a case where we violate an object�oriented programming paradigm� and give the
parent classes all the specializations of their children �e�g�� a speci�c preconditioner
may not de�ne applyl although the generic preconditioner does	� This will be seen
again in Section ����
The argument lists for the functions in Table � use fundamental data types so

that iterative methods codes are not forced to adopt any particular data structure
for vectors� The interfaces use blocks of vectors to support iterative methods that
use multiple right�hand sides� The implementation of these operations use Level �
BLAS whenever possible� All the interfaces have the following form�

void mult�int nr� int nc� const double �u� int ldu� double� v� int ldv� const	
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Table 	� Operations required by iterative methods�

Matrix operations

mult matrix�vector product
trans mult transposed matrix�vector product

Preconditioner operations

apply apply preconditioner
applyt apply transposed preconditioner
applyl apply left part of a split preconditioner
applylt above� transposed
applyr apply right part of a split preconditioner
applyrt above� transposed
applyc apply a combined matrix�preconditioner operator
applyct above� transposed

where nr and nc are the row and column dimensions of the �input	 blocks of vectors�
u and v are arrays containing the values of the input and output vectors� respec�
tively� and ldu and ldv are the leading dimensions of these respective arrays� The
preconditioner operations are not de�ned as const functions� in case the precon�
ditioner objects need to change their state as the iterations progress �and spectral
information is revealed� for example	�
When a non�constant operator is used in the preconditioning� a �exible itera�

tive method such as FGMRES �Saad 
���� must be used� In BPKIT� this arises
whenever GMRES is used as a local preconditioner� Users may wish to write ad�
vanced preconditioners that work with the iterative methods� and which change� for
example� when there is a lack of convergence� This is a simple way of enhancing
the robustness of iterative methods� In this case� the iterative method should be
written as a class function whose class also provides information about convergence
history and possibly approximate spectral information �Wu and Li 
�����

��� Fortran �� interface

Many scienti�c computing users are unfamiliar with C��� It is usually possible�
however� to provide an interface which is callable from any other language� BPKIT
provides an object�oriented type of Fortran �� interface� Objects can be created�
and pointers to them are passed through functions as Fortran �� integers� Con�
sider the following code excerpt �most of the parameters are not important to this
description	�

call blockmatrix�bmat� n� a� ja� ia� num
block
rows� partit� btype�

call preconditioner�precon� bmat� BJacobi� ��d�� ��d�� LP
LU� ��d�� ��d��

call flexgmres�bmat� sol� rhs� precon� ��� ���� ��d���

The call to blockmatrix above creates a block matrix from the compressed sparse
row data structure� given a number of arguments� This �wrapper� function is
actually written in C��� but all its arguments are available to a Fortran �� pro�
gram� The integer bmat is actually a pointer to a block matrix object in C���
The Fortran �� program is not meant to interpret this variable� but to pass it to
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other functions� such as preconditionerwhich de�nes a block preconditioner with
a number of arguments� or flexgmres which solves a linear system using �exible
GMRES� Similarly� precon is a pointer to a preconditioner object� The constant
parameters BJacobi and LP LU are used to specify a block Jacobi preconditioner�
using LU factorization to solve with the diagonal blocks�
The matrix�vector product and preconditioner operations of Table � also have

�wrapper� functions� This makes it possible to use BPKIT from an iterative solver
written in Fortran ��� This was also another motivation to use fundamental types
to specify vectors in the interface for operations such as mult �see Section ���	�
Calling Fortran �� from C�� is also possible� and this is done in BPKIT when

it calls underlying libraries such as the BLAS� BPKIT illustrates how we were able
to mix the use of di�erent languages�

�� LOCAL MATRIX OBJECTS

A block matrix may contain blocks of more than one type� The best choice for the
types of the blocks depends mostly on the structure of the matrix� but may also
depend on the proposed algorithms and the computer architecture� For example�
if a matrix has been reordered so that its diagonal blocks are all diagonal� then a
diagonal storage scheme for the diagonal blocks is best� Inversion of these blocks
would automatically use the appropriate algorithm� �The diagonal block type and
the local preconditioners for it would have to be added by the user�	
To handle di�erent block types the same way� instances of each type are imple�

mented as C�� polymorphic objects �i�e�� a set of related objects whose functions
can be called without knowing the exact type of the object	� The block types are
derived from a local matrix class called LocalMat� a class that de�nes the com�
mon interface for all the block types� The global preconditioners refer to LocalMat

objects� When LocalMat functions are called� the appropriate code is executed�
depending on the actual type of the LocalMat object �e�g�� DENSE or CSR	�
In addition� each block type has a variety of local preconditioners� The explic�

itness or implicitness of local preconditioners need to be transparent� since� for
example� either can be used in block SSOR� Thus both types of preconditioners are
derived from the same base class� In particular� local preconditioners for a given
block type are derived from the base class which is that block type �e�g�� the LP SVD

local preconditioner for the DENSE type is derived from the DENSE block type	� This
gives the user the �exibility to treat explicit local preconditioners as regular blocks�
Implicit local preconditioners are not derived separately because logically they

are related to explicit local preconditioners� All block operations that apply to
explicit preconditioners also apply to local preconditioners� however� many of these
operations are ine
cient for local preconditioners� and their use has been disallowed
to prevent improper usage� Implicit preconditioners cannot be derived separately
from explicit preconditioners because of their similarity from the point of view of
global preconditioners� The LocalMat hierarchy is illustrated in Figure �� showing
the derivation of block types and the subsequent derivation of local preconditioners�
These LocalMat classes form the �kernel� of BPKIT� and allow global precon�

ditioners to be implemented without knowledge of the type of blocks or local pre�
conditioners that are used� Users may also add to the kernel by deriving their own
speci�c classes�
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DENSE

LP_LU LP_ILUK

CSR

LocalMat

Fig� �� LocalMat hierarchy�

The challenge of designing the LocalMat class was to determine what operations
are required to implement block preconditioners and to give these operations se�
mantics that allow an e
cient implementation for all possible block types� The
operations are implemented as C�� virtual functions� The following subsections
describe these operations�

��� Allocating storage

An important di�erence between dense and sparse blocks is that the storage re�
quirement for sparse blocks is not always known beforehand� Thus� in order to
treat dense and sparse blocks the same way� storage is allocated for a block when
it is required� As an optimization� if it is known that dense blocks are used �e�g��
conversion of a sparse matrix to a block matrix with dense blocks	� storage may be
allocated beforehand by the user� Functions are provided to set the data pointers
of the block objects� Thus it is possible to allocate contiguous storage for an array

of dense blocks�

��� Local matrix functions

Table 
� Functions for LocalMat objects�
B � A�CreateEmpty�� B � 
 �
A�SetToZero�dim	
dim�� A � �
A�MatCopy�B� A � B

B � A�CreateInv�lprecon� B � �A��

A�Mat Trans�B� B � AT

A�Mat Mat Add�B
 C
 alpha� C � A� �B

A�Mat Mat Mult�B
 C
 alpha
 beta� C � �AB � �C

A�Mat Vec Mult�b
 c
 alpha
 beta� c � �Ab� �c

A�Mat Trans Vec Mult�b
 c
 alpha
 beta� c � �AT b� �c

A�Mat Vec Solve�b
 c� c � A��b

A�Mat Trans Vec Solve�b
 c� c � A�T b
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Table � lists the functions that we have determined to be required for implementing
the block preconditioners listed in Table 
� The functions are invoked by a block
object represented by A� B and C are blocks of the same type as A� b and c are
components from a block vector object� and � and � are scalars� The default value
for � is 
 and for � is ��
CreateEmpty�� creates an empty block �� by � dimensions	 of the same class

as that of A� This function is useful for constructing blocks in the preconditioner
without knowing the types of blocks that are being used� SetToZero�dim�� dim��

sets A to zero� resetting its dimensions if necessary� This operation is not combined
with CreateEmpty�� because it is not always necessary to zero a block when cre�
ating it� and zeroing a block could be relatively expensive for some block types�
MatCopy�B� copies its argument block to the invoking block� The original data
held by the invoking block is released� and if the new block has a di�erent size� the
allocated space is resized� CreateInv�lprecon� provides a common interface for
creating local preconditioners� lprecon is of a type that describes a local precondi�
tioner with its arguments from Table �� The exact or approximate inverse �explicit
or implicit	 of A is generated� The CreateEmpty and CreateInv functions create
new objects �not just the real data space	� These functions return pointers to the
new objects to emphasize this point�
Overloading of the arithmetic operators such as � for blocks and local precondi�

tioners has been sacri�ced since chained operations such as C � �AB��C would be
ine
cient if implemented as a sequence of elementary operations� In addition� these
operators are di
cult to implement without extra memory copying �for A � B�C�
the � operator will �rst store the result into a temporary before the result is copied
into A by the � operator	�
These are the functions that we have found to be useful for block preconditioners�

For example� C � A��B is used in BTIF�C � �AB��C is used in BILUK� and other
functions are useful� for example� in matrix�vector product and triangular solve
operations� Note in particular that Mat Trans Mat Mult is not a useful function
here� and has not been de�ned�
Note that local preconditioner objects also inherit these functions� although they

do not need them all� For objects that are implicit local preconditioners� no matrix
is formed� and operations such as addition �Mat Mat Add	 do not make sense� For
blocks for which no local preconditioner has been created� solving a system with
that block �Mat Vec Solve	 is not allowed� Here� again� we had to give the parent
classes all the specializations of their derived classes� Table � indicates when the
functions are allowed� An error condition is raised at run�time if the functions are
used incorrectly�
Given these operations� a one�step block SOR code could be implemented as

shown below� Ap is a pointer to a block matrix object which stores its block struc�
ture in CSR format �the ia array stores the block row pointers� and the ja array
stores the block column indices	� The pointers to the diagonal elements in idiag

and the inverses of the diagonal elements diag were computed during the call to
setup� V is a block vector object that allows blocks in a vector to be accessed as
individual entries� The rest of the code is self�explanatory�

�� for �i��	 i�Ap��numrow��	 i���
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Table �� The types of objects that may be used with each function�
Explicit Implicit

Coarse local local
Function blocks precon� precon�

CreateEmpty � �
SetToZero � �
MatCopy � �
CreateInv � �
Mat Trans � �
Mat Mat Add � �
Mat Mat Mult � �
Mat Vec Mult � �
Mat Trans Vec Mult � �
Mat Vec Solve � �
Mat Trans Vec Solve � �

�� �


� for �j�ia�i�	 j�idiag�i�	 j���

�� �

�� �� V�i� � V�i� � omega � a�j� � V�ja�j��

��

�� Ap��val�j��Mat
Vec
Mult�V�ja�j��� V�i�� �omega� ����	

�� �

��

��� diag�i���Mat
Vec
Solve�V�i�� V�i��	

��� �

A block matrix that mixes di�erent block types must be used very carefully� First�
the restrictions for the di�erent block types �Section �����	 must not be violated�
Second� unless we de�ne arithmetic operations between blocks of di�erent types�
the incomplete factorization preconditioners cannot be used�
Our main design alternative was to create a block matrix class for each block

type� The classes would be polymorphic and de�ne a set of common operations
that preconditioners may use to manipulate their blocks� A signi�cant advantage
of this design is that it is impossible to use local preconditioners of the wrong
type �e�g�� use incomplete factorization on a dense block	� A disadvantage is that
di�erent block types �e�g�� specialized types created for a particular application	
cannot be used within the same block matrix�
Another alternative was to implement meta�matrices� i�e�� blocks are nested re�

cursively� It would be complicated� however� for users to specify these types of
matrices and the levels of local preconditioners that could be used� In addition�
there is very little need for such complexity in actual applications� and the two�level
design �coarse and �ne blocks	 described in Section ��
 should be su
cient�

�� NUMERICAL TESTS

The numerical tests were carried out on the matrices listed in Table �� SHERMAN

is a reservoir simulation matrix on a 
�� 
�� 
� grid� with one unknown per grid
point� This is a simple symmetric problem which we solve using partitioning by
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planes� WIGTO��� is from an Euler equation model and was supplied by Larry
Wigton of Boeing� FIDAP�
� models an axisymmetric ��D developing pipe �ow
with the fully�coupled Navier�Stokes equations using the two�equation k�� model
for turbulence� The BARTHT
A and BARTHT�A matrices were supplied by Tim
Barth of NASA Ames and are from a ��D� high Reynolds number aerofoil problem�
with a 
�equation turbulence model� The BARTHT�A model is solved with a
preconditioner based on the less accurate but sparser BARTHT
A model�

Table �� Test matrices� listed with their dimensions and numbers of nonzeros�
Matrix n no� nonz

SHERMAN� � ��� 	 ���
WIGTO��� 	 ��
 �	� ���
FIDAP��� �� ��� ��� ���
BARTHT�A �
 ��� 
�� ���
BARTHT�A �
 ��� � 	�� ���

Tables � and � show the results for SHERMAN
 with the block relaxation and
incomplete factorization global preconditioners� using various local preconditioners�
The arguments given for the global and local preconditioners in these tables cor�
respond to those displayed in Tables 
 and � respectively� A block size of 
�� was
used� Since the matrix is block tridiagonal� BILUK and BTIF are equivalent� The
tables show the number of steps of GMRES �FGMRES� if appropriate	 that were
required to reduce the residual norm by a factor of 
���� A dagger �y	 is used to
indicate that this was not achieved in ��� steps� Right preconditioning� �� Krylov
basis vectors and a zero initial guess were used� The right�hand side was provided
with the matrix�
Since the local preconditioners have di�erent costs� Tables � and � show the CPU

timings �system and user times	 for BSSOR����
� and BTIF� The tests were run on
one processor of a Sun Sparcstation 
�� For this particular problem and choice of
partitioning� the ILU local preconditioners required the least total CPU time with
BSSOR����
�� With BTIF� an exact solve was most e
cient �i�e�� the preconditioner
was an exact solve	�

Table �� Number of GMRES steps for solving the SHERMAN� problem with block relaxation
global preconditioners and various local preconditioners�

BJacobi BSOR�	�
	� BSOR�	�
�� BSSOR�	�
	� BSSOR�	�
��

LP INVERSE �� 
� �� �
 �	
LP RILUK��
��� �	 �� �	 
�� 
�
LP RILUK�	
��� �� 
	 �
 
� ��
LP ILUT��
��� �� �	 
� 	�� 


LP TRIDIAG �	� ��� �� y ��
LP SOR�	�
	� y �
� y y 
��
LP SSOR�	�
	� ��� 
�� 	�� y 
��
LP GMRES�	
�
��	� �� 
� �� 	� ��
LP APINVS�
� ��� �� �� ��
 ��
LP APINV� ��� �	� ��� y ���
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Table �� Number of GMRES steps and timings for solving the SHERMAN� problem with
BSSOR�	�
�� and various local preconditioners�

BSSOR�	�
�� CPU time �s�
precon solve total

LP INVERSE �	 ���	 	��� 
�
�
LP RILUK��
��� 
� ���� ���� ����
LP RILUK�	
��� �� ���� ���� ����
LP ILUT��
��� 

 ���	 ���	 ����
LP TRIDIAG �� ���� 	��� 	���
LP SOR�	�
	� 
�� ���� ����� �����
LP SSOR�	�
	� 
�� ���� ���
� ���
�
LP GMRES�	
�
��	� �� ���� ����	 ����	
LP APINVS�
� �� ���� ��
� ����
LP APINV� ��� ���� ���� ����

Table �� Number of GMRES steps and timings for solving the SHERMAN� problem with block

incomplete factorization and various local preconditioners�
BTIF CPU time �s�

precon solve total

LP INVERSE � ��

 ���� ����
LP DIAG y ���� y y

LP APINV� ��	 ���� 	��	 
���
LP APINVS�
� �
 ��	� ���� ��	�
LP APINVS�	�� 		 ���
 ���� ����

Tables 
� and 

 show the number of GMRES steps for the BARTHT�A matrix�
A random right�hand side was used� and the initial guess was zero� The GMRES
tolerance was 
��� and �� Krylov basis vectors were used� In Table 
�� block
incomplete factorization was used as the global preconditioner� and LU factorization
was used as the local preconditioner� In Table 

� block SSOR with one iteration
and � � 
 was used as the global preconditioner� and level�� ILU was used as the
local preconditioner�

Table ��� Number of GMRES steps for solving the BARTHT�A problem with BILUK�LP LU�

block BILUK level
size � � �

� 
	� ��	 �	�
�� ��
 ��� ��
�� �
� ��� �


Tables 
� and 
� show the results for WIGTO��� using block incomplete factor�
ization� The right�hand side was the vector of all ones� and the GMRES tolerance
was 
���� The other parameters were the same as those in the previous experiment�
The failures in Table 
� are due to inaccuracy for low �ll levels� and instability for
high levels� In Table 
�� LP SVD�������� used as the local preconditioner gave the
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Table ��� Number of GMRES steps for solving the BARTHT�A problem with
BSSOR�	�
	��LP RILUK��
����

block GMRES
size steps

�� ���
��� ��	
�
� ���

best results� LP SVD�������� indicates that the singular values of the pivot blocks
were thresholded at ��
 times the largest singular value�

Table ��� Number of GMRES steps for solving the WIGTO��� problem with BILUK�LP INVERSE�
block BILUK level
size � � � 	


 y y y y

� y y �
 ��
�� y �� 
�� y

Table �	� Number of GMRES steps for solving the WIGTO��� problem with
BILUK�LP SVD���	
����

block BILUK level
size � � � 	


 �� 
� 	� 	�
� 

 	� 	� 	�
�� 
� 	� 	� 	�

Now we show some results with block tridiagonal incomplete factorization pre�
conditioners using general sparse approximate inverses� The matrix FIDAP�
� was
partitioned into a block tridiagonal system using a constant block size of 
�
 �the
last block has size �
	� Since the matrix arises from a �nite element problem� a
more careful selection of the partitioning could have yielded better results�
The rows of the system were scaled by their ��norms� and then their columns

were scaled similarly� since the matrix contains di�erent equations and variables�
A Krylov subspace size of �� for GMRES was used� The right�hand side was con�
structed so that the solution is the vector of all ones� We compare the result with
the pair of global�local preconditioners BILUK����LP SVD��������� using a block
size of � �LP SVD�������� gave the best result after several trials	� Table 
� shows
the number of GMRES steps to convergence� timings for setting up the precondi�
tioner and for the iterations� and the number of nonzeros in the preconditioner�
The experiments were carried out on one processor of a Sun Sparcstation 
��
The timings show that some combinations of the BTIF global preconditioner with

the APINVS local preconditioner are comparable to BILUK����LP SVD��������� but
use much less memory� since only the approximate inverses of the pivot blocks need
to be stored� Although the actual number of nonzeros in the matrix is ��� ����
there were �� ��� block nonzeros required for BILUK� and therefore almost a million
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Table �
� Test results for the FIDAP��� problem�
GMRES CPU time �s� nonzeros

steps precon solve total in precon

BILUK����LP SVD���

��� �� ����� �
	��� ������ ��	 ���
BTIF�LP APINVS�	�� ��� ����� ��	�
� ������ ��� ���
BTIF�LP APINVS�
� 	�� 

��� ����	
 �	���� �� ���

entries which were needed to be stored� The APINVSmethod produced approximate
inverses that were sparser than the original pivot blocks� See �Chow and Saad 
����
for more details�
There is often heated debate over the use of C�� in scienti�c computing� Ideally�

C�� and Fortran �� programs that are coded similarly should perform similarly�
However� by using object�oriented features in C�� to make a programmore �exible
and maintainable� researchers usually encounter a 
� to �� percent performance
penalty �Jiang and Forsyth 
����� If optimized kernels such as the BLAS are called�
then the C�� performance penalty can be very small for large problems� as a larger
fraction of the time is spent in the kernels�
Since C�� and Fortran �� programs will usually be coded di�erently� a prac�

tical comparison is made when a general code such as BPKIT is compared to a
specialized Fortran �� code� Here we compare BPKIT to an optimized block SSOR
preconditioner with a GMRES accelerator� This code performs block relaxations
of the form

� � A��ii ri

xi � xi � �

r � r �A��i�

for a block row i� where Aii is the i�th diagonal block of A� A��i is the i�th block
column of A� xi is the i�th block of the current solution� and r is the current residual
vector� Notice that the update of the residual vector is very fast if A is stored by
sparse columns and not by blocks� Since BPKIT stores the matrix A by blocks for
�exibility� it is interesting to see what the performance penalty would be for this
case�
Tables 
� and 
� show the timings for block SSOR on a Sun Sparcstation 
�

and a Cray C�� supercomputer� for the WIGTO��� matrix� In this case� the right�
hand side was constructed so that the solution is a vector of all ones� the other
parameters were the same as before� All programs were optimized at the highest
optimization level� clock was used to measure CPU time �user and system	 for
the C�� programs� and etime and timef were used to measure the times for the
Fortran �� programs on the Sun and Cray computers� respectively� One step of
block SSOR with � � ��� was used in the tests� The local preconditioner was an
exact LU factorization� Results are shown for a large range of block sizes� and in
the case of BPKIT� for both DENSE and CSR storage schemes for the blocks� The last
column of each table gives the average time to perform one iteration of GMRES�
The results show that the specialized Fortran �� code has better performance over

a wide range of block sizes� This is expected because the update of the residual�
which is the most major computation� is not a�ected by the blocking�
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If dense blocks are used� BPKIT can be competitive on the Cray by using large
block sizes� such as 
��� Blocks of this size contain many zero entries which are
treated as general nonzero entries when a dense storage scheme is used� However�
vectorization on the Cray makes operations with large dense blocks much more
e
cient�
If sparse blocks are used� BPKIT can be competitive on the workstation with

moderate block sizes of � or 
�� Operations with smaller sparse blocks are ine
cient�
while larger blocks imply larger LU factorizations for the local preconditioner�
This comparison using block SSOR is dramatic since two very di�erent data

structures are used� Comparisons of level�based block ILU in C�� and Fortran
�� show very small di�erences in performance� since the data structures used are
similar �Jiang and Forsyth 
�����
In conclusion� the types and sizes of blocks must be chosen carefully in BPKIT

to attain high performance on a particular machine� The types and sizes of blocks
should also be chosen in conjunction with the requirements of the preconditioning
algorithm and the block structure of the matrix� Based on the above experiments�
Table 
� gives an idea of the approximate block sizes that should be used for
BPKIT� given no other constraints�

�� CONCLUDING REMARKS

This article has described an object�oriented framework for block preconditioning�
Polymorphism was used to handle di�erent block types and di�erent local precon�
ditioners� Block types and local preconditioners form a �kernel� on which the block
preconditioners are built� Block preconditioners are written in a syntax compara�
ble to that for non�block preconditioners� and they work for matrices containing
any block type� BPKIT is easily extensible� as an object�oriented code would al�
low� We have distinguished between explicit and implicit local preconditioners� and
deduced the operations and semantics that are useful for polymorphically manipu�
lating blocks� Timings against a specialized and optimized Fortran �� code on both
workstations and Cray supercomputers show that this framework can approach the
e
ciency of such a code� as long as suitable block sizes and block types are chosen�
We believe we have found a suitable compromise between Fortran ���like perfor�
mance and C�� �exibility� A signi�cant contribution of BPKIT is the collection
of high�quality preconditioners under a common� concise interface�
Block preconditioners can be more e
cient and more robust than their non�block

counterparts� The block size parameterizes between a local and global method� and
is valuable for compromising between accuracy and cost� or combining the e�ect of
two methods� The combination of local and global preconditioners leads to a variety
of useful methods� all of which may be applicable in di�erent circumstances�
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Table ��� WIGTO���� BSSOR���

	��LP LU� Sun Sparc �� timings�
Specialized Fortran �� program

block GMRES time �s�
size steps precon solve total average


 ��� ���� ��	��� ��
��� ��	���
� �
� ���� ���
� ����� ��	���

�� 	�� ���
 ������ ������ ��	���
	� 	�� ���� ��
�
� �����	 ��
���
�
 ��� ���� ��	��� ������ ��
���
��� ��� 	��� ��
��� ������ ����	�

BPKIT� dense blocks

block GMRES time �s�
size steps precon solve total average


 ��� ���� 	����� 	����� �����

� �
� ���� ������ ����
� ��
���
�� 	�� ��	� ��	��� ��
�	� ���	��
	� 	�� ���	 	�	��� 	�	��	 ������
�
 ��� ���� 	����� 	����� ������
��� ��� 	��� ������ ������ ����
	

BPKIT� sparse blocks

block GMRES time �s�
size steps precon solve total average


 ��� ���
 ��
��� ��
��	 ������

� �
� ��	
 ������ ������ ��

��
�� 	�� ���� ������ �	���� ��
���
	� 	�� ���� �	���� �	���� ��
���
�
 ��� ���� ��	�	
 ������ ������
��� ��� 
�
� ������ ������ ������
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Table ��� WIGTO���� BSSOR���

	��LP LU� Cray C�� timings�
Specialized Fortran �� program

block GMRES time �s�
size steps precon solve total average


 ��� ����� �	��� �
��� ������
� �
� ����� ���� ���
 ����	�
�� 	�� ����� ���� ���� ����	�
	� 	�� ����� ���� ���� ����	�
�
 ��� ���
� ���	 ���� ������
��� ��� ����� ���	 ���	 ���	��

BPKIT� dense blocks

block GMRES time �s�
size steps precon solve total average


 ��� ����� ��	��� ��
��
 ��	���
� �
� ����� 	���� 	���� ������
�� 	�� ����� ����� ����	 ������
	� 	�� ����� ����� ����� �����	
�
 ��� ����� ���
 ��	� ���	��
��� ��� ����� ���	 ���	 ���		�

BPKIT� sparse blocks

block GMRES time �s�
size steps precon solve total average
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Table ��� Recommended block sizes�
Block type Sun Cray
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